

A Hybrid Wavelet Convolution Network with Sparse-Coding for Image Super-Resolution

Xing Gao, Hongkai Xiong

Department of Electronic Engineering Shanghai Jiao Tong University Sep. 28th, 2016

Background——Sparse Representation

Sparse representation:

Describe a signal as a linear combination of a few atoms from a prespecified dictionary.

 $\mathbf{x} \approx \mathbf{D}\alpha$, s.t. $\|\alpha\|_0 \ll m$ **x D**

where signal $\mathbf{x} \in \mathbb{R}^{m}$, dictionary $\mathbf{D} = [\mathbf{d}_{1}, ..., \mathbf{d}_{k}] \in \mathbb{R}^{m \times k}$, $\alpha \in \mathbb{R}^{k}$ is sparse.

Background——Sparse Representation

The quest for a dictionary:

A good choice of the dictionary is crucial for the success of the sparse representation model.

Analytic dictionaries: DCT, Wavelet, etc.

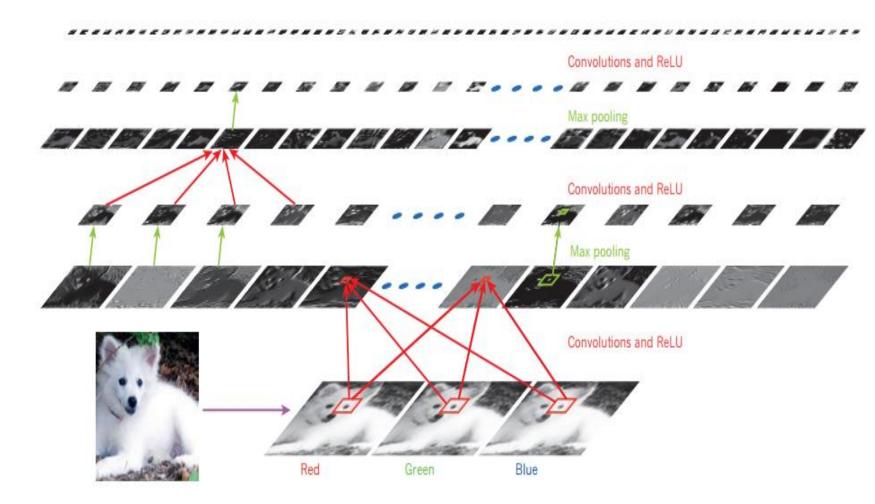
Mathematical simplicity & Multi-scale & fast implementation; Limited expressiveness, simplistic for complex natural phenomena.

Learned dictionaries: MOD, K-SVD, etc.

Adaptive to specific data, better performance; Complex, costly to deploy unknown inner structure.

How to incorporate two types of dictionaries efficiently?

Background—Deep Learning



(LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015)

 Stacked convolution, pooling, and fully-connected layers
 Superiority

- Hierarchical structure features with various abstract levels
- **State-of-the-art** in most of computer vision fields: classification, recognition, etc.

□ Inferiority

- Over 100M parameters
 train hard
- Highly nonlinearity: the property and optimal structure **not well understood**

Challenges

Sparse representation:

Dictionary: Fast implementation & Adaptivity

Deep learning:

Optimize structure (reduce parameters) & Improve performance

A Hybrid Wavelet Convolution Network (HWCN)

Contributions

1. Sparse representation:

Provide an *end-to-end* and *adaptive* framework to implement sparse coding and reconstruction.

2. Deep learning:

Design *a novel structure* of deep networks, composed of predefined and learned convolution kernels, and it is *easier* to train. **fewer parameters**

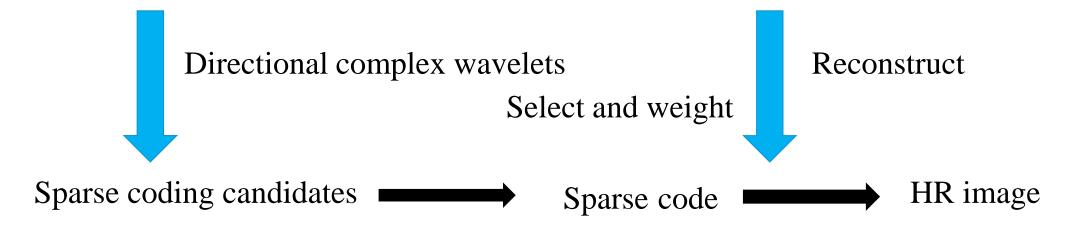
3. Image super-resolution:

Provide another approach to achieve *state-of-the-art* performance and also enhance current performance.

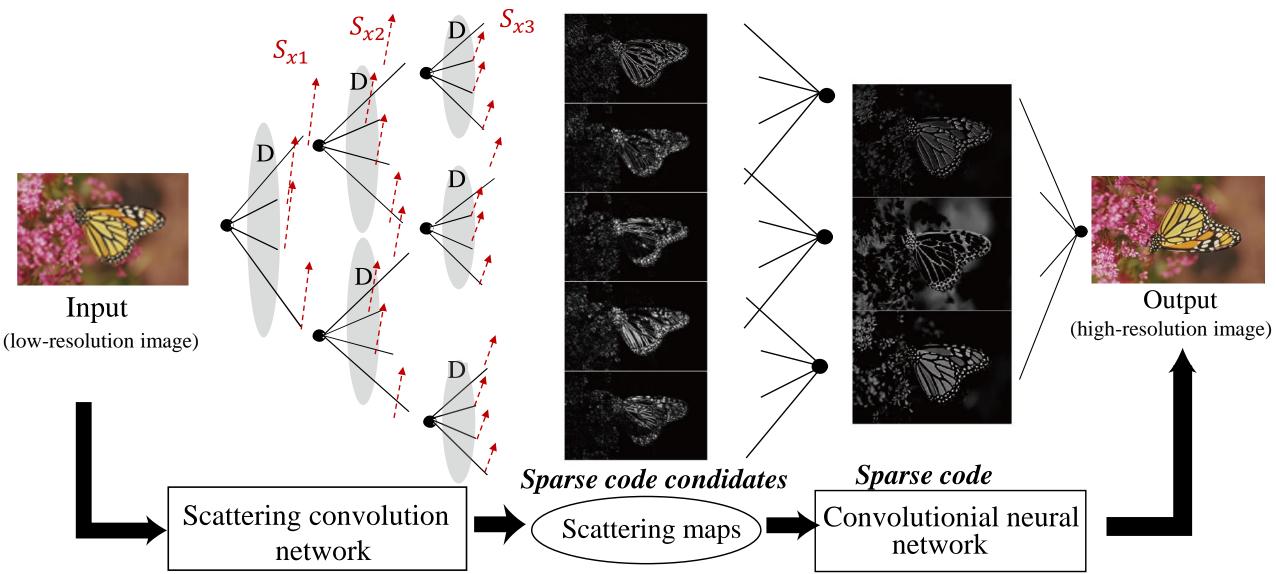
The Architecture of the HWCN

A hybrid wavelet convolution network =

Scattering convolution network + Convolutional neural network



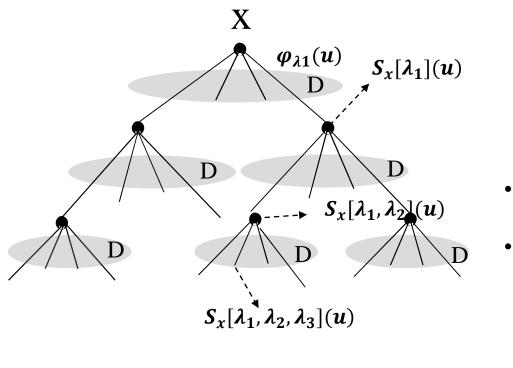
The Architecture of the HWCN



The Scattering Convolution Component

Scattering convolution network:

A revised version of *invariant scattering convolution networks* introduced by S.Mallat *et al.* in 2012.



 $S_x = \{S_x[p](u)\}_p$

• Convolutional filter banks are defined by two-dimensional complex directional wavelets :

with

$$D = \{\psi_{\lambda}(u) : 2^{-2j}\psi(2^{-j}r^{-1}u)\}_{\lambda \in \Lambda},\$$

$$\Lambda = \{ \lambda = 2^{-j} r | j = 0, 1, \cdots, J - 1; r = 0, 2\pi/L, \cdots, 2(L-1)\pi/L \}$$

- Each wavelet in D defines a filter of *each node*, and each node preforms *convolution* and *modulus* operations.
- From the root node to each node forms a path:

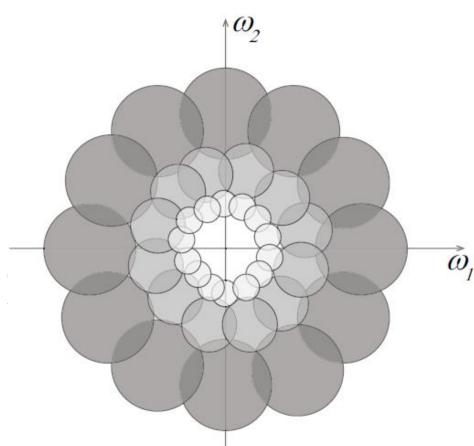
$$p = [\lambda_1, \lambda_2, \cdots, \lambda_m]$$

which produces a scattering map

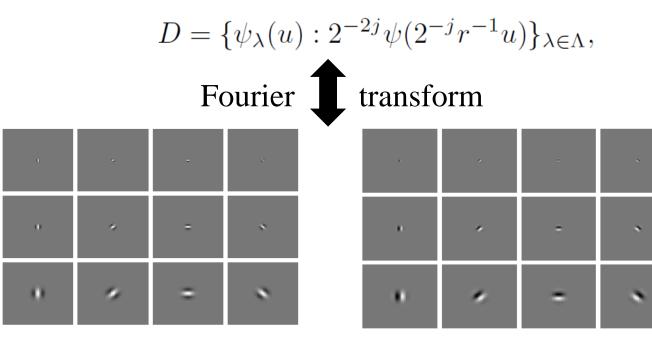
$$S_x[p](u) = |||x * \psi_{\lambda 1}| * \psi_{\lambda 2}| \cdots * \psi_{\lambda m}|.$$

The Scattering Convolution Component

- Scattering convolution network:
 - Frequency domain analysis



• Convolutional filter banks:



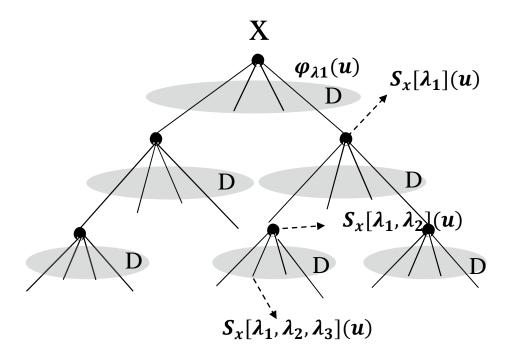
Real parts of filter banks

Imaginary parts of filter banks

The Scattering Convolution Component

Scattering convolution network:

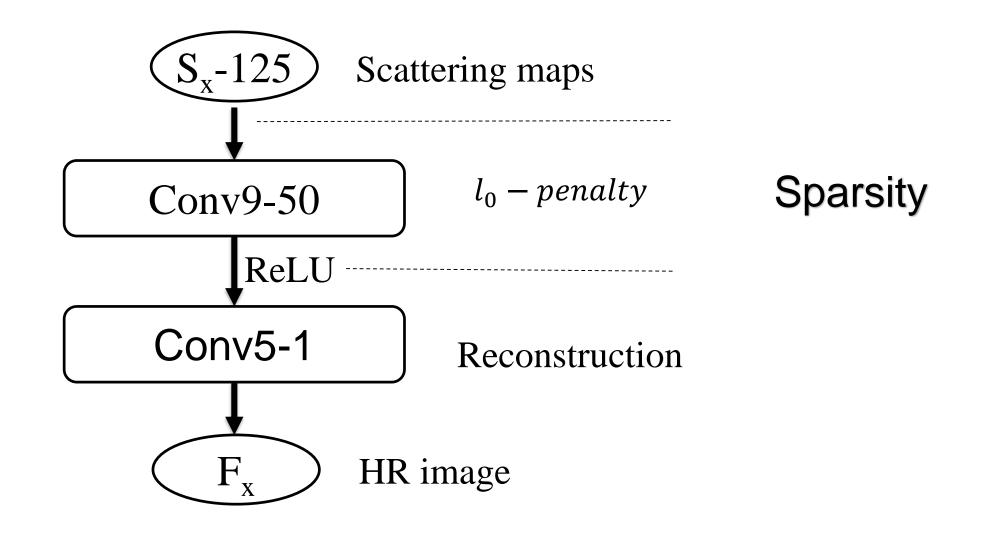
• Optimize structure



- Frequency decreasing path: $|\lambda_{i+1}| < |\lambda_i|$
- Modulus operation removes oscillations —>
 shift signal to lower frequency —> major energy
 of signal along frequency decreasing paths _____

 pruning

The Convolution Neural Component



Relationship to CNNs

Feature maps extracted by the first layer of CNN [1].

Feature maps extracted by the scattering part.

CNNs:

- Learned
- Some 'dead' features

HWCN:

- Predefined and learned
- Multiscale and multidirectional features
- Features can be selected based on scale, direction, and frequency property

[1] Dong C, Loy C C, He K, et al. Learning a deep convolutional network for image super-resolution[M]//Computer Vision–ECCV 2014. Springer International Publishing, 2014: 184-199

Analysis

• Relationship to typical dictionary based methods: $x = D_1 \alpha, y = D_h \alpha$

2

• Dictionary based sparse coding methods:

□ Training dictionary:

$$\min_{D_l,D_h} \frac{1}{2n} \sum_{i=1}^n \left\| D_h \alpha_i - y_i \right\|$$

s.t.
$$\alpha_i = \arg\min_{z} \|x_i - D_l \alpha_i\|^2 + \lambda \|z\|_1$$

□ Sparse coding:

$$\alpha_i = \arg\min_{z} \|x_i - D_l \alpha_i\|^2 + \lambda \|z\|_1$$

HWCN: **D** Scattering convolution network:

- Predefined wavelet filter banks
- Produce sparse code candidates

Analytic dictionary → *Fast implementation* □ Convolution neural network:

- Learned from data
- Select and weight code candidates
- Reconstruct from sparse code
 Learned dictionary → *Adaptivity*
 Forward and end-to-end

 D_1

Training set:

91 natural images, the same as prior methods based on sparse representation $[1\sim3]$.

Test sets:

Set5 & Set14, the same as [3].

Loss function-MSE:

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \|F_{xi}(\theta) - y_i\|^2 ,$$

where F_{xi} , y_i represent reconstructed and ground truth HR image, respectively.

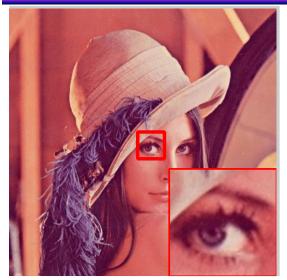
[1]Yang J, Wright J, Huang T S, et al. Image super-resolution via sparse representation[J]. Image Processing, IEEE Transactions on, 2010, 19(11): 2861-2873.
[2] Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[M]//Curves and Surfaces. Springer Berlin Heidelberg, 2012: 711-730.
[3] Dong C, Loy C C, He K, et al. Learning a deep convolutional network for image super-resolution[M]//Computer Vision–ECCV 2014. Springer International Publishing, 2014: 184-199.

Table 1. The result of PSNR (dB) on the Set5 dataset.

Set5	Scale	Bicubic	SC	K-SVD	NE+LLE	ANR	CNN	Proposed
baby	3	33.870	34.258	35.038	35.018	35.092	34.968	34.903
bird	3	32.648	34.266	34.689	34.678	34.724	35.052	35.504
butterfly	3	24.064	25.675	26.000	25.809	25.964	27.677	27.648
head	3	32.824	33.150	33.508	33.556	33.590	33.499	33.703
woman	3	28.654	30.073	30.451	30.335	30.444	31.007	31.260
average	3	30.412	31.484	31.937	31.879	31.963	32.441	32.604

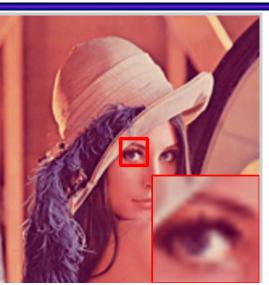
Table 2. Average performance (PSNR dB) and time (s) on the Set14 dataset.

Set14	Scale	Bicubic	SC	K-SVD	NE+LLE	ANR	CNN	Proposed
Avg PSNR	3	27.552	28.381	28.674	28.612	28.669	29.041	29.171
Avg time	3	_	80.8284	3.8231	4.9020	0.7295	2.1742	3.6492



Original/PSNR

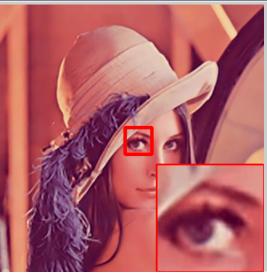
NE+LLE/32.958dB



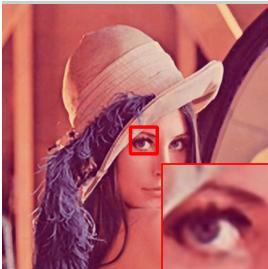
Bicubic/31.618dB



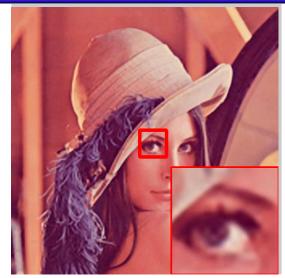
ANR/33.027dB



SC/32.601dB



CNN/33.344dB



K-SVD/32.945dB

Proposed/33.472dB 18

Conclusion

The hybrid wavelet convolution network

- = scattering convolution network + convolutional neural network
- analytic dictionary + learned dictionary
 Sparse & Multiscale Adaptive
- = predefined convolution kernel + trainable convolutional kernel

Prior knowledge & Generalization Flexible & Powerful

Follow-up

- Further optimize the structure of HWCN: contourlet?
- Application in other fields: image classification, recognition.

Institute of Media, Information, and Network

Q & A

Table 3. The result of PSNR (dB) on the Set14 dataset.								
Set14	Scale	Bicubic	SC	K-SVD	NE+LLE	ANR	CNN	Proposed
baboon	3	23.210	23.482	23.523	23.558	23.569	23.605	23.617
barbara	3	26.191	26.348	26.699	26.680	26.635	26.597	26.513
bridge	3	24.427	24.855	25.045	25.005	25.036	25.104	25.195
coastguard	3	26.715	27.054	27.168	27.146	27.174	27.196	27.208
comic	3	23.045	23.844	23.882	23.901	23.966	24.307	24.405
face	3	32.759	33.086	33.475	33.517	33.566	33.525	33.710
flowers	3	27.151	28.172	28.350	28.304	28.413	28.894	29.020
foreman	3	31.667	33.336	33.743	33.805	33.850	34.339	34.759
lenna	3	31.618	32.601	32.945	32.958	33.027	33.344	33.472
man	3	26.978	27.738	27.873	27.839	27.895	28.150	28.302
monarch	3	29.348	30.646	31.029	30.872	31.016	32.316	32.349
pepper	3	32.435	33.390	34.130	33.879	33.905	34.447	34.720
ppt3	3	23.619	24.890	25.136	24.853	24.939	25.933	26.133
zebra	3	26.564	27.898	28.435	28.254	28.371	28.818	28.984
average	3	27.552	28.381	28.674	28.612	28.669	29.041	29.171